THINGS about MOND

Gianfranco Gentile

Universiteit Gent (Belgium)

Benoit Famaey, Erwin de Blok
Introduction: what are rotation curves?

Rotation velocity of gas and/or stars as a function of radius $V_{\text{rot}}(r)$: traced via different lines: Hα, HI, CO, …

Pizzella et al. (2004)
Introduction: rotation curves from HI data

Rotating disk:

Data cube (series of maps @ slightly different freq.) should look like this:

<table>
<thead>
<tr>
<th>2639.7</th>
<th>2681.0</th>
<th>2722.2</th>
<th>2763.4</th>
<th>2804.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

receding velocity (km/s)
Introduction: rotation curves from HI data

Rotating disk:

Data cube (series of maps @ slightly different freq.) should look like this:

What about real observations?
Why are rotation curves interesting?

Rotation curves do not decline as expected from the visible matter.

1) Dark matter halo

or

2) gravity is "boosted" below a certain acceleration \(a_0 \sim 10^{-8} \text{ cm s}^{-2} \)

Modified Newtonian Dynamics (MOND) – Milgrom (1983)

NGC 3198: adapted from Begeman et al. (1991)
Why are rotation curves interesting?

Rotation curves do not decline as expected from the visible matter.

1) Dark matter halo

or

2) gravity is "boosted" below a certain acceleration $a_0 \sim 10^{-8}$ cm s$^{-2}$

Modified Newtonian Dynamics (MOND) – Milgrom (1983)

NGC 3198: adapted from Begeman et al. (1991)
MOND in disk galaxies: Universal Rotation Curve from MOND?

Universal Rotation Curve: parametrization such that: Vel.(radius,luminosity)

Gentile (2008)

Black: original URC
Red: “URC” from MOND
The THINGS survey

- THINGS = The HI Nearby Galaxy Survey
- 34 nearby galaxies (2 Mpc < Distance < 15 Mpc)
- HI emission – high spectral and spatial resolution
- galaxies chosen to span wide range of properties
The THINGS survey
The THINGS survey

• de Blok et al. (2008) analyse 17 rotation curves selection based on inclination angle, regular kinematics etc.

• mass decomposition: Newtonian gravity, baryons, dark matter
The cusp/core discrepancy

- Cold Dark Matter works well on large scales (Cosmic Microwave Background, large scale structure,...)
- But problems on galaxy scales!

- cusp/core problem:

Best understood effect of baryons: adiabatic contraction
It would make CDM halos even more concentrated…

Gentile et al. (2005)
MOND in tidal dwarf galaxies: Rotation curves

Gentile et al. (2007)

Black curve: MOND (*not* at fit, zero free parameters!!)

MOND in tidal dwarf galaxies: Rotation curves

Gentile et al. (2007)

Black curve: MOND (*not* at fit, zero free parameters!!)
THINGS about MOND

• From de Blok et al. (2008) we eliminate a few more galaxies because of non-circular motions

“The highest quality HI rotation curves available to date for a large sample of nearby galaxies” (de Blok et al. 2008)

→ 12 rotation curves to be analysed in MOND

Rotation curves: 40 - 290 independent points per galaxy

For 7/12 galaxies, precise estimate of distance (Cepheids, TRGB)
MOND interpolation functions

\[\mu \left(\frac{g}{a_0} \right) g = g_N \]

\(g \): MOND gravitational acceleration

\(g_N \): Newtonian gravitational acceleration

\[\mu(x) \approx x \text{ for } x << 1 \]

\[\mu(x) \approx 1 \text{ for } x >> 1 \]

“Standard” interpolation function

\[\mu(x) = \frac{x}{\sqrt{1 + x^2}} \]

Milgrom (1983)

“Simple” interpolation function

\[\mu(x) = \frac{x}{1 + x} \]

Famaey & Binney (2005)
We make MOND fits with the two interpolation functions

First, we fix the distances and leave a_0 as a free parameter (stellar M/L ratio is the other free parameter)

The median values are very similar to previous studies:
$a_0 = 1.27 \times 10^{-8} \text{ cm s}^{-2}$ for the standard μ function
$a_0 = 1.22 \times 10^{-8} \text{ cm s}^{-2}$ for the simple μ function
MOND fits to THINGS rotation curves

- We make MOND fits with the two interpolation functions

- First, we fix the distances and leave a_0 as a free parameter (stellar M/L ratio is the other free parameter)

We do not confirm the correlation between central surface brightness & best-fit a_0 (Swaters+10, 1005.5456)
MOND fits to THINGS rotation curves

• We make MOND fits with simple and standard interpolation functions

• We consider 3 possibilities for the distance
 1) fixed
 2) constrained
 3) free

• stellar M/L ratio: free parameter
MOND fits to THINGS rotation curves

• We make MOND fits with simple and standard interpolation functions

• We consider 3 possibilities for the distance
 1) fixed
 2) constrained
 3) free

• stellar M/L ratio: free parameter
MOND fits to THINGS rotation curves

NGC 2976

MOND

Newton+
dark matter
MOND fits to THINGS rotation curves
MOND fits to THINGS rotation curves
MOND fits to THINGS rotation curves

NGC 3198

MOND

Newton+
dark matter
MOND fits to THINGS rotation curves

NGC 3198
This is with the distance constrained
Cepheids: 13.8 ± 1.5 Mpc

What if we leave the distance completely free?
MOND fits to THINGS rotation curves

NGC 3198
This is with the distance constrained
Cepheids: 13.8 ± 1.5 Mpc

What if we leave the distance completely free?

Price to pay: distance of 8.6 Mpc
MOND fits to THINGS rotation curves

NGC 3198
This is with the
distance
constrained
Cepheids:
13.8 ± 1.5 Mpc

Resemblance between residuals (full circles) and non-circular motions (open circles)
Stellar M/L ratios

Solid line: Bell & de Jong (2001), scaled-down Salpeter IMF

We confirm previous results (e.g. Sanders & McGaugh 2002)
Mass discrepancy – acceleration relation

Log (gravitational acceleration of baryons – km\(^2\) s\(^{-2}\) kpc\(^{-1}\))

A constant “dark matter” acceleration?

Walker et al., 1004.5228, ApJL in press
A constant “dark matter” acceleration?
Walker et al., 1004.5228, ApJL in press

From the THINGS sample
A constant “dark matter” acceleration?

Walker et al., 1004.5228, ApJL in press

From the THINGS sample
Conclusions

- THINGS (The HI Nearby Galaxy Survey): high-quality rotation curves
- MOND analysis of 12 rotation curves from the THINGS sample
- 9/12 galaxies have excellent fits
- Among the 3 poorest fits, 2 galaxies also have poor Newton + DM fits
- NGC 3198 has some tension between MOND fit and observations
 Non-circular motions?
- We reproduce the mass discrepancy – acceleration relation
- Constant “dark matter” acceleration: maybe due to limited range in g_N