Suzaku & NuSTAR X-Ray Spectroscopy of γ Cas and HD 110432

M. Tsujimoto (JAXA ISAS)
K. Morihana, T. Hayashi, T. Kitaguchi
1. Introduction

Approach

- Let’s assume Be/WD is right & find what we learn.
 - a) Which sub-type of WD binaries?
 - b) What are properties of WDs (M_{WD}, B_{WD}, etc.)?
 - c) What are predicted and tested?

- X-ray spectroscopy: established for “classical” (late-type companion) WD binaries.
 - X-rays governed by WD, not by companion.
 - Apply physical models of classical WDs to γCas analogues & see if any/none explains γCAs.
 - Previous work of γCAs based on phenomenological spectral models.
1. Introduction

Classical WD binaries X-rays

- Nuclear fusion
 - Steady: SSS (very soft, \(L_x = 10^{37} \) erg/s; Kahabka+97)
 - Erruptive: CNe (Starrfield+16)
- Accretion (Mukai17)
 - Non or weakly magnetic (B<0.1 MG)
 - Moderately or strongly magnetic (B>0.1 MG)

Secondary (late-type)
- “Catacrismic” if dwarf
- “Symbiotic” if giant

Secondary (late-type)
UV from disk
X-ray from WD

Classical WD binaries SED

- SS Cyg (catacridmic)
- WD BL
- WD Disk
- X-ray
- EUV
- Optical
- K5V

Energy (eV)

Flux density (erg/s/cm²/Å)

Wavelength (Å)
1. Introduction
2. Analysis
3. Discussion
4. Summary

Classical WD binaries SED
1. Introduction
2. Analysis
3. Discussion
4. Summary

Classical WD binaries SED
1. Introduction

2. Analysis

3. Discussion

4. Summary

Brightest duo w. hard X-rays

<table>
<thead>
<tr>
<th>Object</th>
<th>RA (J2000.0)</th>
<th>Dec</th>
<th>Observatory/Instrument</th>
<th>Sequence number</th>
<th>Observation date (UT)</th>
<th>t_{exp} (ks)</th>
<th>CR^\dagger (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ Cas</td>
<td>00h56m38s</td>
<td>+60$^\circ$44'08""</td>
<td>Suzaku/XIS, PIN</td>
<td>4060400100</td>
<td>2011/07/13–14</td>
<td>55.4</td>
<td>11/0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NuSTAR/FPMA, B</td>
<td>30001147002</td>
<td>2014/07/24–25</td>
<td>31.0</td>
<td>6.5</td>
</tr>
<tr>
<td>HD 110432</td>
<td>12h42m50s</td>
<td>–63$^\circ$03’31”"</td>
<td>Suzaku/XIS, PIN</td>
<td>4030020100</td>
<td>2008/09/09–10</td>
<td>25.3</td>
<td>2.5/0.64</td>
</tr>
</tbody>
</table>

* Net exposure time.

† Source count rate of XIS (FI)/PIN for Suzaku and FPMA for NuSTAR in all energy bands.
Magnetic accreting WD

- Called polars (B>10 MG) or IPs (B=0.1-10 MG) in classical WD binaries.
- X-rays from accretion column.
- PSAC model (Aizu+73, Wu+94, Cropper+98,99, Suleimanov+05, Yuasa+10, Hayashi+14, 18).

Accretion column

Magnetic field

Strong shock

$T=T_{\text{shock}}$

Dipole field

Direct

$\int dz \ L_x(T(z)) dz$

Reprocessed (Fe fluorescence + Compton)

$T=0$

$z=0$

$z=h$

WD surface
1. Introduction

2. Analysis

3. Discussion

Magnetic accreting WD

1. Strong shock (Rankine-Hugoniot)

\[v_0 = 0.25 \sqrt{2GM_{\text{WD}}/(R_{\text{WD}} + h)} \]
\[\rho_0 = \frac{a}{v_0}, \]
\[P_0 = 3av_0, \]
\[T_0 = 3\frac{\mu m_H}{k}v_0^2, \]

2. M-R relation (Nauenberg72)

\[R_{\text{WD}} = 0.78 \times 10^9 \left[\left(\frac{1.44 M_\odot}{M_{\text{WD}}} \right)^{2/3} - \left(\frac{M_{\text{WD}}}{1.44 M_\odot} \right)^{2/3} \right]^{1/2} \text{ cm} \]

3. Fluid dynamics

\[P = \frac{\rho k T}{\mu m_H} \text{ (EOS)} \]
\[\frac{d}{dz} (\rho v S) = 0 \text{ (Mass)} \]
\[\rho v \frac{dv}{dz} + \frac{dP}{dz} = \rho F \]
\[F = -\frac{GM_{\text{WD}}}{(R_{\text{WD}} + z)^2} \text{ (Momentum)} \]
\[\frac{d}{dz} \left[v \left(\frac{1}{2} \rho v^2 + \frac{\gamma P}{\gamma - 1} \right) \right] = \rho F - \varepsilon \text{ (Energy)} \]

Free parameters

\[M_{\text{WD}}, M_x/S, i \]
\[M_x = \frac{L}{GM_{\text{WD}}} \]

Strong shock

\[z=h \]

\[z=0 \]

WD surface
Magnetic accreting WD

- Examples in classical WD binaries (IPs).

Hayashi+14

V1223 Sagittarii

Yuasa+10

EX Hydrae
1. Introduction

2. Analysis

3. Discussion

4. Summary

Magnetic accreting WD

- Bad fits w. Tbabs*PSAC (no reproc.)
Magnetic accreting WD

1. Introduction
2. Analysis
3. Discussion
4. Summary

- Bad fits w. Tbabs*PSAC (no reproc.)
- Improved by
 - Reflection comp
 - Partial NH. (Seen in almost all IPs).
1. Introduction

Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>(\gamma \text{Cas})</th>
<th>HD 110432</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Fixed values)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance(^{†})</td>
<td>(D) (pc)</td>
<td>188</td>
<td>420</td>
</tr>
<tr>
<td>(\text{tbabs}^{‡})</td>
<td>(N_H) ((10^{20} \text{ cm}^{-2}))</td>
<td>1.45</td>
<td>15.8</td>
</tr>
<tr>
<td>(Fitted values(^{*}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{tbpcf})</td>
<td>(N_H) ((10^{22} \text{ cm}^{-2}))</td>
<td>(0.66^{+0.02}_{-0.01})</td>
<td>(0.94^{+0.03}_{-0.02})</td>
</tr>
<tr>
<td>Covering fraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{acrad})</td>
<td>(M_{\text{WD}}) ((M_{\odot}))</td>
<td>(0.72^{+0.04}_{-0.06})</td>
<td>(0.81^{+0.03}_{-0.03})</td>
</tr>
<tr>
<td>(Z) (solar(^{§}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>log (a) (g cm(^{-2}) s(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_r) (degree)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Derived values(^{</td>
<td></td>
<td>}))</td>
<td></td>
</tr>
<tr>
<td>(L_X) (erg s(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\dot{M}X) ((M{\odot}) yr(^{-1}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\chi^2_{\text{red}} \text{ (d.o.f.)} \quad 1.23 \text{ (2312)} \quad 1.42 \text{ (212)}
\]
Non-mag accreting WD

- Called DNe in classical WD binaries.
- X-rays from boundary layer (at qDNe, NL)
- Cooling flow model (Pandel+05, Wada+17) + reprocessed comp.

Physical models (e.g., Hertfelder & Kley17) not matured to fit X-ray spec.
1. Introduction

2. Analysis

3. Discussion

4. Summary

Non-mag accreting WD

- Examples in classical WD binaries (DNe).

Wada+17

Pandel+05

Non-mag accreting WD

- Bad fits w. Tbabs*mkcflow (no reproc.)
Non-mag accreting WD

1. Introduction
2. Analysis
3. Discussion
4. Summary

- Bad fits w. Tbabs*mkcflow (no reproc.)
- Improved by
 - Reflection comp
 - Partial NH. (Seen in some DNe).
1. Introduction

2. Analysis

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>γ Cas</th>
<th>HD 110432</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Fixed values)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance †</td>
<td>D (pc)</td>
<td>188</td>
<td>420</td>
</tr>
<tr>
<td>Angle</td>
<td>i_t (degree)</td>
<td>65</td>
<td>59</td>
</tr>
<tr>
<td>$tbabs$ ‡</td>
<td>N_H (10^{20} cm$^{-2}$)</td>
<td>1.45</td>
<td>15.8</td>
</tr>
</tbody>
</table>

(Fitted values*)

<table>
<thead>
<tr>
<th>$tbpcf$</th>
<th>N_H (10^{22} cm$^{-2}$)</th>
<th>$0.94^{+0.01}_{-0.02}$</th>
<th>$1.36^{+0.05}_{-0.03}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covering fraction</td>
<td></td>
<td>0.486 ± 0.003</td>
<td>0.893 ± 0.005</td>
</tr>
<tr>
<td>$mkcflow$</td>
<td>T_{max} (keV)</td>
<td>$25.0^{+0.13}_{-0.12}$</td>
<td>$48.2^{+1.7}_{-2.9}$</td>
</tr>
<tr>
<td>Z (solar)</td>
<td></td>
<td>$0.41^{+0.01}_{-0.01}$</td>
<td>$1.23^{+0.07}_{-0.10}$</td>
</tr>
<tr>
<td>$\dot{M}X$ ($10^{-10} M\odot$ yr$^{-1}$)</td>
<td></td>
<td>$1.61^{+0.01}_{-0.01}$</td>
<td>$1.82^{+0.14}_{-0.03}$</td>
</tr>
<tr>
<td>$reflect$</td>
<td>$d\Omega/2\pi$</td>
<td>$0.27^{+0.01}_{-0.01}$</td>
<td>$0.52^{+0.05}_{-0.06}$</td>
</tr>
<tr>
<td>$gauss$</td>
<td>EW_{Fe} (eV)</td>
<td>54^{+3}_{-4}</td>
<td>90^{+4}_{-5}</td>
</tr>
<tr>
<td>χ^2_{red} (d.o.f.)</td>
<td></td>
<td>1.27 (2313)</td>
<td>1.52 (200)</td>
</tr>
</tbody>
</table>

* The errors indicate a 1σ statistical uncertainty.
Comparison to classical WDs

- $T_{\text{max}}/M_{\text{WD}}, \dot{M}_x, S/4\pi R_{\text{WD}}^2$ compatible w. classical.
- M_{WD} agrees opt M_2 (γCas); derived (HD110432).

0.8\pm0.4 Mo (Smith+12)
Comparison to classical WDs

- γCas, HD110432 OK w. accreting WD models.
- Which is more likely -- mag or non-mag?
 - Remains inconclusive.
Mag vs non-mag (1) Partial N_H

- Among classical accreting WDs, partial N_H seen in
 - Almost all mag WDs (Ramsay+08).
 - Some non-mag WD w. high incl. (Mukai+09, Pandel+05).

- γCAs smaller N_H & covering frac than classical w. partial N_H.
Mag vs non-mag (2) Fe L

- Dichotomy known in high-res spec at 10-12, 15-17 Å (Mukai+03).
- γCas exhibits Fe L.
- Qualitative criteria needed.

Mag vs non-mag (3) Fe Kα

- Inconclusive due to overlapping distribution.

- V1223 Sgr (IP)
- U Gem (qD)
- TT Ari (NL)
- HD110432

- γCas

<table>
<thead>
<tr>
<th></th>
<th>γCA</th>
<th>qDNe</th>
<th>NL</th>
<th>IPs</th>
<th>Polars</th>
<th>Symb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log EW (eV)</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Working hypothesis: γCAs = Be/WD.
- Physical models (mag & non-mag) applied.
- Two γCAs well fit, including Fe Kα & Compton.
- Reasonable range of parameters wrt classical WDs.
 - M_{WD} agrees opt M_2 (γCas); derived (HD110432).
 - Other properties (M_X, incl., $S/4\pi R_{\text{WD}}^2$) estimated.
- Mag vs non-mag inconclusive yet.
 - Partial N_H, Fe L, Fe Kα EW.
- Future time-domain behavior important.
 - P_{spin}, DNe, CNe.
Future time-domain (1) \(P_{\text{spin}} \)

- \(P_{\text{spin}} \) in X-rays: defining characteristics of IPs.
- Expected if \(\gamma \)CAs have mWD for small \(S/4\pi R_{\text{WD}}^2 \)
- \(P_{\text{spin}} \sim 1 \text{d} (\sim 10^{-2} \text{ mHz}) \) predicted (Apparao02) from analogy to Be/NS (Corbet+, Waters & v Kerkwijk89).

MAXI 8yr PSD. Barycentric corrected.

Probably an artifact.
1. **Introduction**
2. **Analysis**
3. **Discussion**
4. **Summary**

Future time-domain (2) DNe

- If akin to DNe, X-ray spectra should change.
 - Low M: hard & bright (quiescent)
 - High M: soft & faint (outburst)

![Graphs showing energy vs counts s^{-1} keV^{-1}](image.png)

Future time-domain (3) CNe

- γCas, HD110432 too small M_{WD} & M for a CN.
- Others may have sufficiently large M_{WD} & M.

Kato+14