High quality broad-band X-ray spectra of ULXs: testing and comparing phenomenological models of accreting compact objects

Fabio Pintore

Inaf-Iasf Milano

In collaboration with: 1) Luca Zampieri, Tim Roberts, Andy Sutton, Matt Middleton;

2) Luca Zampieri, Luigi Stella, Anna Wolter;
Most ULXs are believed to be BHs of stellar origin accreting at super-Eddington rates. However, the ULX population may in fact hide accreting compact objects with significantly smaller or larger masses, as intermediate mass BHs (HLX-1, NGC 2276, ...) or neutron star (M82 X-2). Poor quality data can be highly misleading.
IMBHs

IMBHs can be looked for between the brightest ULXs

A sub-sample of bright ULXs is in Sutton et al. (2013) but others can be found

Here we present the source NGC 5643 ULX1
NGC 5643 ULX-1

Distance:
- Probably less (13.9 Mpc, Sanders et al. 2003).

Discovered by Rosat (Guainazzi et al. 2004)
0.8 arcmin from the AGN
Observed once with Chandra and 3 times with XMM-Newton

Pintore et al. (2016)
Luminosity variability up to a factor of 3
From low quality data, spectral and timing properties consistent with a hard state of Galactic BHs.

Best-fit with a hard powerlaw ($\Gamma \sim 1.7-1.8$), high luminosity ($> 1e40$ erg s$^{-1}$), and short-term variability $> 10\%$ (although consistent with 3% at 3σ).
AN
IMBH??
Power spectrum averaged over 3 intervals between $6\times10^{-3} - 1\text{Hz}$

High quality XMM-Newton data (~100 ks)

No variability (less than 5%)
High energy residuals with simple models.

No short-term variability and spectral shapes different from both hard or soft states of Galactic BH binaries
AN IMBH??

NO!

Low quality data are misleading most of the time
AN IMBH??

NO!

Low quality data are misleading most of the time

... SO WHAT?
Best-fit:
- a hot advection dominated disc ($kT \sim 2.6$ keV, $p \sim 0.6$)
- or with an optically thick corona ($kT_{\text{seed}} \sim 0.1$ keV, $kT_e \sim 1.7$ keV, $\tau \sim 10$).

Similar fits to the low-quality data gave the same spectral results.

Clear high energy roll-off (confirmed also by Annuar et al. 2015 with NuSTAR data).
Best-fit:
- a hot advection dominated disc ($kT \approx 2.6$ keV, $p \approx 0.6$)
- or with an optically thick corona ($kT_{seed} \approx 0.1$ keV, $kT_{e} \approx 1.7$ keV, $\tau \approx 10$).

Similar fits to the low-quality data gave the same spectral results.

Clear high energy roll-off (confirmed also by Annuar et al. 2015 with NuSTAR data).
- No IMBH accreting sub-Eddington;
- A standard ULX, possibly with a stellar mass BH accreting super-Eddington;
- Flux variability not accompanied by spectral variability;
- Marginally evidence of short-term variability;
- Hardly to explain it only with an advection dominated disc;
- Possibly classified as hard/ultraluminous source (see Sutton et al. 2014);
- Powerful winds;
- View face-on?
- Strong beaming?
- Variability produced by clumps of the wind?
- From the luminosity, more likely a 30 solar masses BH (If the distance was 13.9 Mpc, the luminosity would be 30% less);
No IMBH accreting sub-Eddington;
A standard ULX, possibly with a stellar mass BH accreting super-Eddington;
Flux variability not accompanied by spectral variability;
Marginally evidence of short-term variability;
Hardly to explain it only with an advection dominated disc;
Possibly classified as hard/ultraluminous source (see Sutton et al. 2014);
Powerful winds;
View face-on?
Strong beaming?
Variability produced by clumps of the wind?

From the luminosity, more likely a 30 solar masses BH (If the distance was 13.9 Mpc, the luminosity would be 30% less);
- No IMBH accreting sub-eddington;

- A standard ULX, possibly with a stellar mass BH accreting super-Eddington;

- Flux variability not accompanied by spectral variability;

- Marginally evidence of short-term variability;

- Hardly to explain it only with an advection dominated disc;

- Possibly classified as hard/ultraluminous source (see Sutton et al. 2014);

- Powerful winds;

- View face-on?

- Strong beaming?

- Variability produced by clumps of the wind?

- From the luminosity, more likely a 30 solar masses BH (If the distance was 13.9 Mpc, the luminosity would be 30% less);
A challenging question:

We already know of the NS in M82 X-2.

Is it possible that there are other NSs amongst presently known ULXs?
We could apply to ULX spectra phenomenological models which were widely adopted for accreting NS.

absorbed highecut*powerlaw

Test on one source: **NGC 1313 X-1**

\[M(E) = \begin{cases}
\exp\left(\frac{E_c - E}{E_f}\right) & E \geq E_c \\
1.0 & E \leq E_c
\end{cases} \]
Clearly evidence for strong residuals
Instead of adding a blackbody, we add three broad, gaussian absorption lines.

\[
\chi_v \sim 1
\]
\[
\Gamma \sim 2.2
\]
Energy cut-off \sim 8 \text{ keV}
Folding energy \sim 16 \text{ keV}

<table>
<thead>
<tr>
<th>Line1</th>
<th>Line2</th>
<th>Line3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (KeV)</td>
<td>0.75 +/− 0.02</td>
<td>1.56 +/− 0.05</td>
</tr>
<tr>
<td>(\sigma) (keV)</td>
<td>0.06 +/− 0.02</td>
<td>0.35 +/− 0.08</td>
</tr>
<tr>
<td>Strenght</td>
<td>0.016 +/− 0.007</td>
<td>0.14 +/− 0.07</td>
</tr>
</tbody>
</table>
Three absorption lines
Blending of absorption lines from the most abundant elements (Ne, Mg, S, O, Si, Fe); see Middleton et al. (2015), Pinto et al. (2016)
Blending of absorption lines from the most abundant elements (Ne, Mg, S, O, Si, Fe); see Middleton et al. (2015), Pinto et al. (2016)

Cyclotron lines (fundamental and two armonics). Electrons, protons?
Blending of absorption lines from the most abundant elements (Ne, Mg, S, O, Si, Fe); see Middleton et al. (2015), Pinto et al. (2016)

Cyclotron lines (fundamental and two harmonics). Electrons, protons?

$B_e \sim 8 \times 10^8 \text{ G}$
Blending of absorption lines from the most abundant elements (Ne, Mg, S, O, Si, Fe); see Middleton et al. (2015), Pinto et al. (2016)

Cyclotron lines (fundamental and two harmonics). Electrons, protons?

\[B_e \sim 8 \times 10^9 \text{ G} \]

Blending of absorption features for the two low-energy lines, and one cyclotron lines at 2.5 keV (electrons, protons)?

\[B_e \sim 3 \times 10^{11} \text{ G} \]
\[B_p \sim 5 \times 10^{14} \text{ G} \]
Blending of absorption lines from the most abundant elements (Ne, Mg, S, O, Si, Fe); see Middleton et al. (2015), Pinto et al. (2016)

Cyclotron lines (fundamental and two armonics). Electrons, protons?
$B_e \sim 8\times10^9$ G

Three absorption lines

MAGNETAR??
- This is only a phenomenological model;

- It described NS spectra of very low quality;

- The variability would still be in the hard component;

- Possibility to have the wind;
Thanks for your attention